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ABSTRACT: The Multiple-Trait Gibbs Sampler for
Animal Models programs were extended to allow
analysis of ordered categorical data using a Bayesian
threshold model. The algorithm is based on data
augmentation, where a value on the unobserved
underlying normally distributed variable (liability) is
generated in each round of iteration for each categori-
cal observation. The programs allow analysis of
several continuous and ordered categorical traits.
Categorical traits can have any number of response
levels. Models can be different for each trait. The
programs were used to analyze twinning and ovula-
tion rates from a herd of cattle selected for twinning
rate at the U.S. Meat Animal Research Center. Data
included number of calves born at each parturition for
the lifetime of a cow and number of eggs ovulated for
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several estrous cycles before first breeding as heifers.
A total of 6,411 calvings was recorded for 2,087 cows
with 83.2% single and 16.8% multiple births. A total of
19,849 ovulations was recorded for 2,332 heifers with
85.2% single and 14.8% multiple ovulations. Mean
posterior estimates of heritability and fraction of
variance accounted for by permanent environmental
effects (PE) were .128 and .103 for twinning rate and
.168 and .079 for ovulation rate. Mean posterior
estimate of genetic correlation was .808, and correla-
tion of PE effects was .517. Use of a threshold model
could allow for more rapid genetic improvement of the
twinning herd through improved identification and
selection of genetically superior animals because of
higher heritability on the underlying scale.

Method, Variance Components, Heritability,

Genetic Correlation, Bayesian Theory
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Introduction

Many traits of economic importance in animal
breeding are observed as discrete outcomes (e.g.,
twinning rate, reproductive success, and disease
incidence) or subjectively scored in a set of distinct
categories (e.g., dystocia and conformation traits).
The purpose of this project was to extend the
methodology of Sorensen et al. (1995) for univariate
threshold models to implement a Gibbs sampling
(GS) algorithm for a multiple-trait model for categor-
ical variables that have binomial or multinomial
outcomes and for any combination of categorical and
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continuous traits using data with any combination of
missing traits. A secondary goal was to extend the
Multiple-Trait Gibbs Sampler for Animal Models
(MTGSAM) (Van Tassell and Van Vleck, 1996)
programs based on these theoretical results. The final
goal was to apply these procedures to the analysis of
ovulation and twinning rates from a long-term selec-
tion project for increased twinning rate at the USDA
U.S. Meat Animal Research Center.

Materials and Methods

Model Background

Linear Models. Several authors have examined the
use of GS in linear models. Applications in animal
breeding include sire models (Wang et al., 1993),
animal models (Wang et al., 1994; Van Tassell et al.,
1995), and maternal effects models (Jensen et al.,
1994; Van Tassell, 1994). In addition, Van Tassell and
Van Vleck (1996) derived results for application of GS
to a general multiple-trait linear model. A software
package was developed to implement these theoretical
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results in a flexible set of FORTRAN programs. The
results from those derivations will be used as the basis
for the further developments in this study.

Threshold Models. Ordered categorical traits are
often assumed to be controlled by a continuous
underlying variable, which is wusually called the
liability. The observed outcome is then a function of
the liability and fixed unknown thresholds; a categori-
cal value is observed if the liability is contained in the
region defined by the thresholds for that value.

The liability-threshold concept was first outlined by
Wright (1934) for analysis of number of toes in
Guinea pigs. Gianola and Foulley (1983) described a
Bayesian analysis using threshold models with known
thresholds and variance components. Harville and
Mee (1984) characterized the likelihood approach to
the threshold model problem, including estimation of
thresholds and variance components. Foulley et al.
(1983) developed Bayesian methodology for analysis
of a categorical trait with two continuous traits with
the restriction that traits were assumed to be recorded
for all three traits for all animals. Janss and Foulley
(1993) extended this methodology to allow for missing
data for analysis of one categorical and one continuous
trait. Finally, Hoeschele et al. (1995) extended the
work of Foulley et al. (1983) and Janss and Foulley
(1993) to include a single categorical variable that
has multiple categories with several continuous varia-
bles and any combination of missing traits.

Albert and Chib (1993) described a GS algorithm
for threshold models. Sorensen et al. (1995) applied
GS to Bayesian analysis of a single-trait threshold
model with multiple categories. Wang et al. (1997)
developed a GS algorithm that might be applied to an
analysis of a multiple-level categorical trait with a
continuous trait. The results of these authors are
extended here to the completely general case of any
combination of continuous and categorical data with
missing observations.

Bayesian Multivariate Threshold Model

Derivation of the threshold model for the multivari-
ate model with linear and threshold traits was based
on the model described by Sorensen et al. (1995) and
Wang et al. (1997). The mixed linear model notation
used by Van Tassell and Van Vleck (1996) will be
used to describe the model assumptions and results on
the liability scale.

Let y be the observed random variable for a
categorical trait, then g is the continuous, underlying,
normally distributed random variable corresponding
toy (i.e., the liability). For continuous traits, let g be
the observed random variable (i.e., g = y). Assume
trait i has ¢ mutually exclusive and exhaustive
categories defined by y¢j+1 unknown thresholds. It is
usual to define tig =~ and twi = 0. In addition,

because the categories are ordered, the intermediate
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thresholds must be ordered (i.e., t; < t;, < ...

< ti.\bi—l)' Then category k is defined by the region from
ti,k—l to ti,k'

On the liability scale, residual effects are assumed
to be distributed normally. As described by Van
Tassell and Van Vleck (1996), residual effects can be
partitioned in groups of traits for which non-zero
covariances are allowed. Covariances are 0 for
residual effects in different groups. Groups are needed
when traits are not observed for the same animals
(e.g., milk yield and scrotal circumference). Groups
are used here only in the context of assigning residual
effects to different (co)variance matrices, and these
are not related to genetic groups. For this derivation, a
record is a set of observations on one or more traits for
an animal, and residual effects for these traits may or
may not be independent. Although an animal can have
multiple records, residual effects for different records
are assumed to be independent.

First, the results of Sorensen et al. (1995) for the
conditional distribution of the liability to the multivar-
iate setting are extended:

gj.|s,R; 0 N(Wj.S,R;),

where g; are all traits on the observed (underlying)
scale for the continuous (categorical) scale for record
j; ' = [B' U], where B8 are the fixed effects and u are
the random effects; wj are rows of W = [X Z] that
correspond to gj, where X and Z are appropriately
dimensioned incidence matrices relating fixed and

random effects to the vector of observations; and R; is

an rj x rj matrix of (co)variances of residuals for the
traits measured on record j, where rj is the number of
traits observed for record j. Assume that the vector of
observations on the liability scale is sorted by trait
within group within record; then, for a record with all

. P
traits measured R; = _DlRi, where R; is the tj x
1=

covariance matrix among residuals for group i of the
residual effects, tj is the number of observed traits in
residual group i, p is the number of groups of residual
effects, and O is the direct sum operator (Searle,
1982). Note that the vector g corresponds to the vector
of observations for the linear model; the model
assumptions for g are the same as those for y in Van
Tassell and Van Vleck (1996).

Conditional on s, the vectors of observations or
liabilities for records (gj) are independent. Therefore,
the joint density of the data on the liability scale
conditional on s is simply the product of densities for
each record:

q *
J_|:|1¢’(gj.?""J'.S'Rj )
¢(9:Ws,R),

f(gls. R)
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where ¢(Xx;u,V) is the probability density function
of the (multivariate) normal distribution, XN (g,V),
as defined in Van Tassell and Van Vieck (1996),

q .
R = _Dle, and g is the number of records.
1=

To facilitate development of fully conditional distri-
butions needed for GS, the conditional distribution of
residuals for traits missing in residual blocks with at
least one observation is required. Define e(j; as the
vector of residual effects for the traits in residual
group i and record j. Assume without loss of generality
that the vector of residuals can be partitioned as
i) =F®'(.iy.m ©(j,i),oF where e(j,iy m is the subvec-
tor of missing residuals and ej i) o is the subvector of
residuals for observed traits. Further define c(j o as
the vector of observations or liabilities for observed
data, i.e., C(j.iy,o = 9(j,i): and C(j,iy,m = €(j.,i),m: Then

¢ = [gwy €wym 912 €2 m - (g ml
and e'm = [€'(1,1),m €'(12),m €'(qp),m). If all or
Nno traits are observed in a residual group i for record
J, then e(jiym is a null vector. That is, missing
residuals are only considered if at least one observa-
tion is present in a residual group. Similarly, g is a
null vector if no observations are measured for group i
in record j. These results allow specification of the
conditional distribution of c:

f(cl18,u,R1,R2,...,R,)=¢( c;Ws,R)
ORI x exp%%(c— ws) R™(c - Ws)@

where X, Z and W = [X Z] have been redefined to
include additional rows of zeros inserted that cor-

q .
respond to missing observations, R = 'Dle has been
J:

redefined to account for missing observations,

R; = iDDi R;j, and i, includes all residual groups for
e

which record j has at least one observation.
The next distribution needed is that of the observed
values, y, conditional on the continuous observations
and liabilities, c. The relationship between the two
variables is unusual because the values of y are
known if the values of ¢ and t are known, but the

reverse is not true. First, let t' = El t, .. tTE where
t; is the vector of thresholds for trait i and 7 is the
total number of traits. For convenience, assume t; is a
null length vector for continuous traits. Then if record
j includes an observation for categorical trait i

P(Y;i = Klgjit) = CLif G, 4 < g <t
otherwise

VAN TASSELL ET AL.

and, therefore,

¥

Z 1Y = K) % (G < G5 < tig)

f(¥iilgjint) =

where yj;i (gji) is the observed (underlying) random
variable for trait i and record j, and I(:) is the
indicator function. The indicator function has a value
of 1 if the evaluated expression is true and a value of O
otherwise. By definition, for continuous trait i,
f(yjilgji, ) = 1. Then, because the observed values are
conditionally independent,

[l 9it)

Jii

flylg.t)
O%i 0

|_D| QZI(YH = K) x 1t < g5 < ti,k)H,

where iy are categorical traits.

Next, assumptions for the prior distribution are
needed. The prior distribution for thresholds assumes
that thresholds are distributed as order statistics from
a uniform distribution on the interval [tmin,tmaxl
(Sorensen et al.,, 1995; Wang et al., 1997). Specifi-
cally,

T

=] f(t)

Ay -1 At ik

) D( ! ) . Ei,max B ti,minE
where

T = {(ti,l,’ti,z“"ti,\l/i) | (ti,minSti,lsti,Z'"Sti,¢iSti,max)}.

| (40Ty),

Fixed effects were assumed to have flat prior distribu-
tions (i.e., f(8) O constant). The random effects were
assumed to be normally distributed. Additionally, a
known covariance structure corresponding to the
numerator relationship matrix was assumed for the

genetic effects. Let u = @10 u, uvg where ug

corresponds to the additive genetic effects, u; cor-
responds to the uncorrelated random effects in group i
for i >0, and « is the number of groups of uncorrelated
random effects. As described by Van Tassell and Van
Vleck (1996), groups are used only in assignment of
uncorrelated random to different (co)variance ma-
trices to force covariances to be zero between specific
effects across traits (i.e., these are not genetic
groups). Assume ug is ordered by animal within trait
and the traits are ordered, and that traits are ordered
with direct genetic effects in order for all traits
followed by correlated genetic effects for traits that
have them. Then G is a dg x dg matrix that describes
the genetic (co)variances among the traits for an
animal, where dg is the number of traits plus the
number of traits with correlated genetic effects. Let A
be an n x n matrix that describes the covariance
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structure among genetic effects within traits; typically
A is the numerator relationship matrix, and n is the
number of animals in the pedigree. The vector u; for
i > 0 corresponds to random effects that are uncor-
related with the genetic effects and the other random
effects. Then Dj is the dj x dj matrix of (co)variances
among the random effects across traits in group i for
an animal, where d; is the number of uncorrelated
random effects in group i (i.e., the number of traits
represented in group i). Let n; be the number of levels
for each of the dj uncorrelated random effects in group
i. The partitioned form of matrix £ = Var(u) can be
written as

©OA 0 O
H . El(DiDI”i)H ,

where 00 and O correspond to direct product and direct
sum operators, respectively (e.g., Searle, 1982). Let

Joint Posterior Distributions

From these assumptions and using Bayes theorem, the joint posterior distribution (i.e.,

2051
Lo=GUAand % =D 0 Ip, fori=1,

Y
_D Ei-
i=0

.y ¥, SO that
can be also written as ¥ =

Inverted Wishart (IW) distributions are used as
prior distributions for the (co)variance components
mainly for computational simplicity. The IW prior
distributions for the matrix of (co)variance compo-
nents are assumed mutually independent. Let
Go (vg), Do; (7g), and Ro, (»r,) be the prior scale
(shape or degree of belief) parameters for genetic,
group i of uncorrelated random, and group j of residual
(co)variances, respectively. In addition, let

9= 7 O—l,Ildi:Vdi—di—l,andVri:Vri—ti—l.

v,=v,—d

In the MTGSAM programs, the user supplies shape
parameter and expected value of the prior distribution
of the (co)variance matrix, and then the scale matrix
is calculated based on those values. For example, for
the genetic (co)variance matrix, if the mean value

specified by the user is G*, then Gal = V;G*.

the density of the

parameters given the data and the prior information) can be formed:

f(c,t,B,u,G,Dl,Dz,. :
0 fiylgt) x fclBuR,R,. .

.,D,Y,Rly,vg,GO,vdl,Dol,. .

x f(GIVg,G
[¥i
O 15 b = Kl
],lDit =1
XIGI—H/Z X eXp%‘

1
- (rg*do*1) m Y
x 16] 27 x eXpHr%f GOG_l% x 11

=1
AT

Then comblnlng terms,
f(c,t,B,u,G,Dl,Dz,. - D, R1Y.g,Govg Do - -

N =

u +t +1)

Va,Dn v JRA
d7 07 r;’ 0;

WR)) x f(8) x f(t)x f(ulG.D..D,...

7 -]
(67 0 Aot < ] foa ™

V
X exp gr i -1
O % 2 Rofi @

Wy ,Dn v
dv 07 r

0+ tr(u;GoG_l))ﬁ

"rp'ROP) )
.,D7

[] 8t 00f < [ Ra)e

D r
< g < ti,k)H x |RI™Y2 x exp% % c - ws) R (c - WS)H x f(t)

x exp% % u'i HDl_l O I”E ui%

(V +d+1) < ex EIZI’D V;i _1@
P 0 %7 DOiDi

u 2
EID.I

1,R01,. . "rp’ROP)

O

[1]

i
0 f(t) x QZ ¥ = k) < It < G < ti,k)H
jll:lit =1
~Ln+ +dg +1
x|G| ? ( s X exp %% (uo(G_1 O A_l)u
(n+1/d+d+1

Xl_l DI 2

(i

« exph DT

q +y, H; +1)

0By + s, DoD L

00 1 -
x expgr%;RoRi—l@ X exp %E(c - ws) R? (c - Ws)@
I
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Letu, = %“il Ui, --- uidEfor i=0,... 9 thenS, :{Soj’k} : WheresOjk :u'OjA_luok. Similarly, S; :{Sij’k} , Where
g

sij'k = u'ijuik, Q= zl e(j’i)e'(j’i), and g; is the number of records with data observed in residual group i. Using these
J:

new definitions, an alternative form of the joint posterior density is

f(C,t,ﬁ,u,G,Dl,Dz,. . "Dv’RIy'Vg'GO’le’DOl" . "de’Doy'yrl'Rol" - vrp,Rlop)
O¥i O - (nrgtdotl) 1 * _
O f(t) x I—l QZ |(yji = k) x |(ti,k—i < g < ti‘k)H x |G| 2 X EXp%Qtr((”gGO + So)G 1)%
j,lDit =1
Y - }(ni+ud +d+1)
X 2 i D_} "D +S. —1@
izr! D;l X expp 2tr%'di 0.*SiH D; 2]

1
_ ,(qi+uri+ti+1

0
xiL_! Rl 2 ) x exp@%tr%:iRoiJrQiH Ri'lﬂ

Fully Conditional Densities

A set of fully conditional densities is required to implement GS. These densities are required for each scalar
element or subvector of elements in the vector of parameters in the model. Each fully conditional density
corresponds to the distribution of specific parameter(s) conditional on all other parameters in the model and the
data (i.e., the distribution of the specific parameter if the values of the remaining parameters were known). The
fully conditional densities can be derived from the joint posterior density (i.e., from [1] or [2]) by ignoring all
terms not involving the parameter(s) of interest and then treating the parameters considered to be known as
constants and reorganizing terms retained into the density kernel of a known distribution for the parameter of
interest. The kernel of a distribution is the part of the density function containing the random variable that
remains when all constants are ignored.

Liabilities. First, the fully conditional distribution of the underlying liabilities for categorical data and missing
residuals is derived from [1]:

f(c|t,6,u,G,D1,D2,. . ,DY,R,y)

¥

TIE 00 = 9 = 1l <
il =1
O%

DDQ;'(yii = K)otk < G

x exp@%(c - Ws)RYc - Ws)ﬁ

x ¢(c;Ws,R),

< ti,k)ﬁ
[l
< ti,k)H

where the terms in the product H;'H include only those for categorical data. Recall that c includes not only

liabilities and observations on continuous traits but also missing residuals.
To specify the form of the fully conditional distribution of the liabilities corresponding to observed values,
assume, without loss of generality, that the vector of traits can be partitioned as

where Gji

Similarly partition Wj. and R; as

= G is the liability for the observed trait i of record j and c_j; are the remaining values for record j.
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Wi = @\;ﬁ @ and
.
R = ﬂll rlzﬁ
! 21 Rop

Let e =¢ - Wj.s, and define & and eji. similarly. Define Cj asc without Cji» then, using the form of the

conditional normal distribution,

f(gjilt,ﬂ,u,G,Dl,Dz,. . .,DV,R,C_ji,y)

ng d -1 -1
Dgzl(yji = K) x It < g; < ti,k)H % ¢(gji?Wji5 + rRy(Coi = Wais)ryy - r12R22r21)
=1

The distribution corresponds to a truncated normal distribution with truncation points att;,_, andt; ifyji =k
and zero elsewhere; i.e.,

-1 _ 1
giltBuRcc;y O TN(WjiS + rR(Coi. — Wis)ryy - r12R22r21)

for . < g < tj and y; = Kk,

_Jl
i
where TN indicates the truncated normal distribution. This distribution can be stated in terms of the residual
€ = Gji — W;;S because there is a one-to-one relationship with the liability given the fixed and random effects:

i =G
-1 _ -1
giltBuR.c;y O TN(rlszz(C—ji- W.iS)ry - r12R22r21) [3]

Thresholds. The fully conditional distribution of the thresholds are derived from [1]:

i O O
f(tl8,u.G.D,; D,....D,.Rcy) O M @ 1(Yji = K) x Wt < g5 < ti’k)g x It O Ti)H, [4]
jidi, k=1

where the terms in the product again include only those for categorical traits. From [4], the upper limit fort; , is
min(gji|yji = k+1) and the lower limit is max(gji|yji = k). Because the density is proportional to a constant,

which is the kernel of a uniform distribution, the fully conditional distribution for a threshold is uniform with
limits of max(gjilyji = k) and min(gji|yji = k+1), i.e.,

1
min(gly =k + 1) - max(ggly; = k)

f(ti’k|t_ik,ﬁ,u,G,Dl,Dz,. . ,Dv,R,c,y)

and
ti,klt—ik’c’y O U(max(gji|in = k), min(gji|in = k+1)). [5]

The notation U(a,b) indicates that a variable has a continuous uniform distribution with minimum a and
maximum b. For these derivations to hold, data are assumed to be observed for all categories of interest. For
example, if calving ease is scored on discrete values from 1 to 5, then it is assumed that there are observations for
all levels or that only thresholds between observed categories are of interest. The fully conditional distribution in
the general case where empty categories are allowed is given by Albert and Chib (1993) and Sorensen et al.
(1995).

Remaining Effects. The remaining fully conditional distributions are analogous to those given in Van Tassell
and Van Vleck (1996) with c replacing y (i.e., the vector of liabilities and continuous data replaces the vector of
continuous data). Specifically, the fully conditional distribution of the vector of fixed and random effects is
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s|G,D;,D,,...D,Rc O N(§C7Y),

U _1 ] _l
where § = C‘lr, r W’R'lc, and C = @R X XR 72 @

'RIX zRz + ¢t

Because of the definitions of R, X, and Z, C is not the coefficient matrix for Henderson’s mixed model equations
with missing observations, and r is not the MME right-hand side because the missing residuals are included in c.

Then the fully conditional distribution of a scalar or subvector element s; of s, where s' = %l 52% is

-1 — -1
5115,G.D;.D,, .. .D,,R.C O N(C3} (1 = Ciz%).Cij), 6]
c
! ! 11 12
where r' = r,4dand C =
B—l 25 @21 CZZ@

The blocking algorithm of Van Tassell and Van Vleck (1996) is retained. The fully conditional distribution of
a subvector or scalar can be written as

s;1s,G.Dy Dy, .. .DRC [ N%i,(PiCP;)'lﬁ, 7]

n-1 : iS i
where §, = (PiCPi) (Pir - PiCP_is_i), P is a permutation matrix such that Ps = @' Sﬁ = @'@

s; are the random effects in the block, and s_; are the remaining fixed and random effects. Although this form

appears complex, it is simply a precise representation of [6], where the permutation of elements is shown here
explicitly. The (co)variance matrix is comprised of the appropriate elements of the coefficient matrix
corresponding to the rows and columns for the elements in the block, and the mean is equal to the update in a
block Gauss-Seidel iteration algorithm.

Fully conditional distributions for missing residuals can be obtained from [1]:

f(emlgﬂ,U,R) a expﬁ% (c - ws) R (c - Ws)ﬁ.

Recall that €G.i) includes €.iy,m and €.i).0° Then for residuals corresponding to observed data,
€i.ivo = 9G.ivo ~ Wiiiy.oS Residual effects for group i are distributed normally: ej'i|Ri 0 N(0, Rj). Let

R
R; = @mm mo@ be partitioned as e;, and then
R Ji
om 00
-1 -1
eiml€G.i.0$GD1Dy - wDRG 0 N(RyoR€sRmm = RmoRosRom)- (8]

Finally, as described by Van Tassell and Van Vleck (1996), the fully conditional distributions of the
(co)variance matrices can be derived using form [2] of the joint posterior distribution. The fully conditional
distributions for the genetic (co)variance matrix, each group of uncorrelated random effects, and each group of
residual effects are

* -1
Gl5.GyrgDyDy - wDyuRe O WGy + So) . n + »fi, [9]
*D =1 0
D;15.Dg.74,01.D:: - - :DicgDisy, - DuRe T IWHDg + SH, ny + v and [10]
* =1 0
RileyRo 781Dz - DyRy - Ry wR,C O IW Ry + Qo + 7, (1

respectively.
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Starting Values

For the continuous traits, starting (co)variances
are supplied by the user for those components. The
starting values correspond to the means of prior
distributions if using informative prior distributions
for the (co)variances. Gauss-Seidel iteration using the
starting variance components is used to calculate
starting values for fixed and random effects. The user
specifies maximum number of rounds of iteration and
convergence criterion.

For categorical traits, starting values for fixed and
random effects and thresholds pose a challenge for the
MTGSAM programs. ldeally, the starting values
should be solutions to a threshold model. Hoeschele
and Tier (1995), for example, suggest using maxi-
mum a priori (MAP) estimates evaluated at the
approximate marginal maximum likelihood (MML)
estimates of the (co)variance components. This ap-
proach is not practical in development of these
programs, because general MML and MAP estimates
would dramatically increase computing demands and
algorithm complexity for a general model. An approxi-
mation based on a linear model was chosen. A score
based on the cumulative distribution function (CDF)
of the normal distribution suggested by Djemali et al.
(1987) was used. The score is calculated as the
median of the CDF for a category. If the cumulative
fractions of scores for categories 1 to y; for trait i are

Piz Pizr = Piy. then y;i = ‘P_l%g)i,k - pi,k_l% where

y;i is the normalized score, ®71(-) is the standard

inverse cumulative normal function, and pjg is 0. Rank
correlation of solutions using the normalized score
with solutions using a threshold model was .99 in the
study by Djemali et al. (1987). Solutions were
calculated using Gauss-Seidel iteration with the
normalized scores and the starting variance compo-
nents. The starting values for the thresholds are based
on the approximate liabilities using the linear model.
These approximate liabilities are calculated as the
sum of the solutions for the fixed and random effects

for an observation, i.e., c;i = wjjs. The starting
threshold is the midpoint of the extremes of the
adjacent categories:

*

ty = %(min(c}cﬂyji = k + 1) + max(cfilyji = k))

Constraints

Because the underlying scale is arbitrary for
categorical variables with respect to mean and vari-
ance, constraints must be imposed to guarantee
identifiability. Residual variance of 1 and t;; = 0 are
usually assumed. Sorensen et al. (1995) refer to this
as the “standard” parameterization. As described by
Sorensen et al. (1995), an alternate parameterization
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can be used with multiple categories: residual vari-
ance is assumed unknown (and estimated), t;; = O,
and tp; = 1. Sorensen et al. (1995) found that the
alternate parameterization may allow for increased
rate of convergence when a Markov Chain Monte
Carlo algorithm (e.g., GS) is used to characterize the
posterior distributions. For binary data, the standard
parameterization is used because only one threshold
exists. For categorical traits with at least three
categories, both parameterizations are possible.

Implementation of the Gibbs Sampler

Using the fully conditional distributions, [3] to [11],
the GS algorithm used can be outlined as follows:

1. Input or calculate starting values for all variables
as described.

2. Generate liabilities for categorical observations

from [3].

Generate thresholds from [4].

Generate fixed effects from [6].

Generate genetic effects and blocked uncorrelated

random effects from [7].

6. Generate uncorrelated random effects not in a
block from [6].

7. Calculate residual effects for traits with observa-
tions, and generate missing residuals from [8].

8. Calculate quadratics for genetic effects, Sg, from
UgA luoj.

9. Generate G from [9].

10. Calculate quadratics for each group of uncor-
related random effects, S;, from u'ijuik.

11. Generate each D; from [10].

12. Calculate quadratics for each group of residual
effects, Q;, from ei’je'i’j.

13. Generate each R; from [11] and rescale them as
necessary.

14. Repeat steps 2 through 13 many times.

o ks w

MTGSAM Flexibility

The MTGSAM programs were designed to be as
general as possible. The programs allow analysis of
several continuous and categorical variables. Categori-
cal variables can have any number of levels. The
categorical levels must be ordered but are not required
to be sequential or to start at 1. The program allows
any number of fixed and random effects for categorical
or continuous traits. The model can be different for
each trait.

The MTGSAM programs allow for use of standard
or alternate parameterization of the thresholds and
residual variances. Standard parameterization is as-
sumed for binary data. For categorical traits with at
least three categories the MTGSAM user can choose
from the two possible parameterizations. When using
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the standard parameterization sampling the residual
variance is done as usual, but after sampling the
residual variances are set to 1 and the covariances are
scaled so that correlations are identical to those
sampled. Although the scaling procedure is ad hoc in
nature, the sampling sequence should result in a
Markov Chain because of the arbitrary underlying
scale for categorical traits.

Finally, the MTGSAM programs can be used for
sire models by considering the genetic effect as a sire
effect, and a sire-maternal grandsire model can be fit
by considering maternal grandsire effect as the
correlated genetic effect. For sire-maternal grandsire
models that are fit using this method, the existence of
maternal effects is assumed implicitly because sire
and maternal grandsire effects are fit separately. The
use of sire or sire-maternal grandsire models may be
especially useful for categorical data with low frequen-
cies, because the Gibbs sampler may not converge in
these situations using animal models (Hoeschele and
Tier, 1995).

Analysis of Twinning and Ovulation Rate Data

Data. The programs were used to analyze twinning
and ovulation rates from a herd of cattle selected for
twinning rate at the U.S. Meat Animal Research
Center (USMARC). A brief summary of the experi-
ment follows, but previous papers from the twinning
and ovulation rate project have completely described
the foundation animals and general management of
the animals in the project (Echternkamp et al., 1990)
as well as the collection of ovulation rate information
(Gregory et al., 1990). The selection experiment was
initiated in 1981 at USMARC to increase twinning
rate of beef cattle in an effort to improve the economic
efficiency of production. Foundation cows were ob-
tained from two sources: 96 cows with records of two
or more twin calvings were acquired from industry,
and 211 females with records of twinning in other
projects were transferred to the twinning project.
Foundation sires were obtained from several sources:
semen from three Swedish Friesian and two Nor-
wegian Red bulls was obtained, semen from two
USMARC bulls (a Pinzgauer and a Charolais) with
daughters that had produced 8 to 10% twins during
other projects, and randomly chosen unproven bulls
out of 36 foundation cows. Semen from three addi-
tional Swedish Friesian sires was introduced in 1988.
Multiple ovulation and embryo transfer were used to
augment the first generation. Breeds with significant
representation included Holstein, Swedish Friesian,
Simmental, Pinzgauer, Charolais, Swedish Red and
White, Norwegian Red, Hereford, and Angus. About
750 females calved each year during two calving
seasons (spring and fall). Approximately the top 25%
of females for predicted breeding value (PBV) for
twinning were mated to progeny-tested, proven sires.
The remaining females were mated to young, un-
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proven sires. Approximately 30 males were identified
by PBV each year for progeny testing through a two-
stage selection procedure.

Initial study of evaluation of ovulation rate as a
correlated trait began with females born in fall 1985.
At that time, approximately half of the daughters of
each bull were randomly chosen to be palpated per
rectum for 8 to 10 estrous cycles and bred to calve at
approximately 2.5 yr of age. The remaining female
contemporaries were bred to calve at approximately 2
yr of age. Preliminary results supported determination
of ovulation rate for all heifers beginning with those
born in fall 1986.

Van Vleck and Gregory (1996) presented a REML
analysis of a data set using a linear model that
included nearly all of the data analyzed in this study.
An additional season of ovulation data was added to
their data. A more recent analysis of similar data with
early data excluded was presented by Gregory et al.
(1997).

Data included number of calves born at each
parturition for the lifetime of a cow and number of
eggs ovulated for several estrous cycles before first
breeding as heifers. Observations of triplets born (n =
25) or three eggs ovulated (n = 29) were included as
counts of two (i.e., both traits were considered
binary). A total of 6,411 calvings was recorded for
2,087 cows with 83.2% single and 16.8% multiple
births. A total of 19,849 ovulations was recorded for
2,332 heifers with 85.2% single and 14.8% multiple
ovulations. Approximately 24, 20, 19, 15, 11, and 11%
of the cows with twinning data had 1, 2, 3, 4, 5, and
> 5 observed calvings, respectively, and 10, 7, 23, 34,
16, and 10% of the heifers with ovulation data had <7,
7, 8, 9, 10, and > 10 recorded estrous cycles,
respectively.

Model. The bivariate animal models used to analyze
these data correspond to those used by Van Vleck and
Gregory (1996). The model for twinning rate included
a fixed factor for effects of combinations of year,
season, and age at parturition and random factors for
animal (additive genetic) and permanent environ-
mental (PE) effects of the cow. The model for
ovulation rate included fixed effects of birth year-
season, age at observation (< 12 mo, 12 to 13 mo, 14 to
15 mo, 16 to 17 mo, and > 17 mo), and calendar month
at observation and random factors for animal and PE
effects of the heifer. The residual correlation was
assumed to be 0 because calving and ovulation data
were not recorded simultaneously.

Genetic groups were included to account for breed
differences and selection periods. Westell (1984)
groups were assigned based on subpopulations
represented in the base population. The Westell group
effects were included in the relationship matrix using
the algorithm described by Westell et al. (1988).

Gibbs Sampler and Posterior Estimation. Two in-
dependent chains were computed, and samples from
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the two chains were combined for analysis. Each chain
was run for a total of 225,000 rounds with the first
25,000 rounds discarded as the burn-in or initializa-
tion period. The burn-in period was based on subjec-
tive evaluation of plots of values from the Gibbs chain.
Although the chains seemed to have converged by
5,000 rounds of iteration, a conservative burn-in
period of 25,000 rounds was used. Flat prior distribu-
tions were used for variance components. Heritability
of .185 and fraction of PE variance of .074 were
assumed for starting values for both traits. Starting
values of .80 and .50 were used for genetic and PE
correlations, respectively.

Lag correlations of values sampled from the Gibbs
chain were calculated for a range of intervals between
sampled values. Lag correlations were fit to a
nonlinear curve that assumed lag correlation
decreased geometrically with interval between sam-

ples; the equation fit p; = pil, where pj is the correlation

of samples drawn i rounds apart for a given
parameter. The curve was fit (i.e., p; was estimated)

using PROC NLIN of SAS (1989). After estimates of
01 were obtained, thinning intervals were calculated to
obtain lag correlations of a specific level. If a lag
correlation of o (0 <« < 1) is desired, and a geometric
decrease in correlations is assumed, the thinning
interval (n,) required to obtain that correlation of

n
thinned samples can be written as « = (p;) *. Solving
for ng,

ny = log(e)/log(oy).

The advantage of this approach is that the cutoff
points for a specific lag correlation are easily deter-
mined.

Because of space limitations, samples were taken at
10-round intervals after the burn-in period. Posterior
distribution estimates were calculated using the
unthinned samples from the Gibbs chain. Although
these samples have a high autocorrelation, this
provides an unbiased estimate of the posterior distri-
bution. The posterior distributions were estimated
using the general average shifted histogram algorithm
of Scott (1992). Posterior distribution estimates were
also used to estimate modes and credible sets (Baye-
sian confidence intervals).

Other researchers have observed bias in heritability
estimates when using GS and threshold models
(Hoeschele and Tier, 1995; Moreno et al., 1997).
Heritability tends to be biased upward when the
amount of information per fixed effect is small.
However, models used for these data included rela-
tively small numbers of fixed effects: twinning rate
included one fixed effect with 96 levels, and ovulation
rate included three cross-classified fixed effects with 5,
12, and 17 levels. Because fixed effects should be
relatively well estimated, estimates should have little
bias.
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Point estimates of means for each parameter were
calculated as the means of samples or functions of
samples taken at 10-round intervals. Variability of
point estimates due to the length of the Gibbs chain
(i.e., Monte Carlo error) were estimated. Monte Carlo
standard deviation was estimated as the standard
error of the mean of samples that were thinned to a
lag correlation of .01 (i.e., nearly independent). The
thinning rate was based on the nonlinear estimation
of lag correlation.

REML Linear Model Analyses. The analyses of Van
Vleck and Gregory (1996) were repeated for the data
because an additional season of ovulation data was
added after their study was completed. The models
used were the same as in that study, and parameter
estimates were obtained using the Multiple-Trait
Derivative-Free REML (MTDFREML) programs
(Boldman et al., 1995). The effects included in the
models were the same as those in the threshold
models. The programs were restarted and allowed to
iterate until a high level of convergence was attained.
Convergence was declared when the variance of the
simplex values (-2 log likelihoods) was <10710, To
ensure global convergence, the programs were
restarted with previous converged solutions until
convergence occurred at the same maximum.

Heritability estimates from the linear model analy-
sis were rescaled to the underlying scale using the
transformation suggested by Robertson in Dempster
and Lerner (1950). Let p; be the frequency of outcome

1 for trait i (e.g., twinning rate), hiZOBS be heritability
on the observed (binary) scale, and hizcom be herita-

bility on the underlying continuous scale. Then

2
2 _ loss

xp; (1 - py)
cont T m(eippi0,1)F

The same transformation was also applied to the
fraction of variance accounted for by PE.

Results and Discussion

Point estimates for heritabilities, fractions of vari-
ance, and correlations are presented in Table 1 for the
Bayesian posterior distributions and for the linear
model (LM) REML analysis. Posterior density esti-
mates are shown in Figures 1 and 2. Table 1 also
contains 95% credible sets for posterior means.

Mean posterior heritability estimates were .128 and
.168 for twinning and ovulation rate. The transformed
heritabilities from the LM analysis were .098 and
.175. The transformed LM heritability estimate was
similar to the threshold estimate for twinning rate.
For ovulation rate, however, the transformed LM
estimates was only 77% of the threshold estimate. The
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Table 1. Marginal posterior means and lower and upper cutoffs for 95% credible
sets from Bayesian threshold model, REML estimates from linear models, and
REML estimates rescaled to underlying scale for heritabilities (h?), fractions of

variance accounted for by permanent environmental (¢*) and residual (r?)
effects for twinning (T) and ovulation (O), and genetic (r,) and
permanent environmental (r) correlations of effects across traits

Threshold model

Parameter Mean Lower cutoff Upper cutoff Linear model Linear rescaled
h% 128 .085 173 .044 .098
hé .168 124 .215 .074 175
rg .808 .690 .920 .709 —
c% .103 .050 154 .029 .065
3 079 042 115 041 097
re 517 .183 .859 773 —
rz 769 721 815 926 —
3 753 726 780 885 —

heritabilities indicate that significant genetic varia-
tion exists for both traits. Estimates of fraction of
variation associated with PE were smaller than
heritabilities but accounted for substantial variation
for both traits. Mean estimates of fractions of variance
differed from modal estimates by <.005 except for PE
fraction (mean [mode] estimates of .103 [.098]), which
indicates that the posterior means were relatively
symmetric (Figure 1).

Mean posterior estimates of genetic correlation
were .808 for the threshold model, and the LM
estimate was .709. The posterior mode estimate was
.835. The difference between mean and modal esti-
mates reflects some lack of symmetry in posterior
distribution estimates (Figure 2). Although the esti-
mates from the linear and threshold models differed,
the 95% credible set from the threshold model
included the LM estimates. The high genetic correla-
tion between the traits indicates that ovulation rate is
closely related to twinning rate and can be used
successfully for selection before twinning rate can be
observed.

Mean posterior estimates of PE correlation was
517, and the LM estimate was .773. Estimates of
posterior mode were .538 and again reflect asymmetry
(Figure 2). The credible set is quite large for the
estimate of PE correlation, which indicates poor
precision for this parameter. The wide credible set
results, in part, because of data structure. Although
the data set included many repeated records for both
traits (as confidence intervals for PE fraction indi-
cate), <25% of the animals have multiple observations
for both calving and ovulation rate.

Estimates of Monte Carlo standard deviations
(MCSD) are presented in Table 2. The MCSD were
<.005 for all parameters except correlations, which
were <.01 for genetic correlations and <.05 for PE
correlation. Two factors resulted in larger MCSD for
correlations compared with variance fractions. First,

the number of independent samples was smaller than
for variance fractions because of higher correlations
among sequential samples (Table 2); therefore, vari-
ance fractions had higher thinning intervals. Second,
the variance of the posterior distributions was larger
for the correlations. The differences in variance can be
seen in Figures 1 and 2 by comparing the range of
values for the x-axis on the graphs.

Program Availability

The MTGSAM programs are available through the
Internet or from the authors. The MTGSAM home
page is available via the Animal Geneticists Discus-

Table 2. Monte Carlo standard deviations (MCSD),
number of samples used to calculate MCSD (N), and
lag correlations with 500 rounds between values
sampled from the Gibbs chain (R500) for
heritabilities (h?), fractions of variance accounted for
by permanent environmental (c?) and residual (r?)
effects for twinning (T) and ovulation (O), and
genetic (ry) and permanent environmental (r,)
correlations of effects across traits

Model with genetic groups

Parameter MCSD N R500
h2 .0038 56 054
h2 .0026 66 .033
rg .0085 34 183
c2 0046 42 118
2 .0025 54 .063
re 0319 32 198
rz .0036 55 .059
r3 .0008 305 .000
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Figure 1. Marginal posterior distributions of fractions of variance for twinning and ovulation rates for genetic,

permanent environmental (PE), and residual effects.

sion Group home page, which can be accessed from
links on the American Society of Animal Science home
page (http://www.asas.uiuc.edu).

The MTGSAM programs are intended to be used by
those familiar with the concepts of GS, including
evaluation of the burn-in period, thinning interval,
and convergence. The programs simplify much of the
work required to use GS, but users must still make
certain that results obtained are sensible.

Implications

The MTGSAM programs were extended to allow
ordered categorical data with a Bayesian threshold
model. The improved programs allow simultaneous
analysis of continuous and categorical data. The
programs estimate (co)variance components, variance
fractions, correlations, fixed and random effects, linear
functions of effects, and thresholds. Because of use of a
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Figure 2. Marginal posterior distributions of genetic and permanent environmental (PE) correlations of twinning

and ovulation rates.

more correct model and higher heritability on the
underlying scale, use of a threshold model could allow
for more rapid genetic improvement of the twinning
herd through improved identification and selection of
genetically superior animals.
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